Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Gut Microbes ; 14(1): 2138677, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36519445

RESUMO

Reported numbers of diarrheal samples exhibiting co-infections or multiple infections, with two or more infectious agents, are rising, likely due to advances in bacterial diagnostic techniques. Bacterial species detected in these samples include Vibrio cholerae (V. cholerae) and enteropathogenic Escherichia coli (EPEC), which infect the small intestine and are associated with high mortality rates. It has previously been reported that EPEC exhibit enhanced virulence in the presence of V. cholerae owing to their ability to sense and respond to elevated concentrations of cholera autoinducer 1 (CAI-1), which is the primary quorum-sensing (QS) molecule produced by V. cholerae. In this study, we examined this interspecies bacterial communication in the presence of indole, a major microbiome-derived metabolite found at high concentrations in the human gut. Interestingly, we discovered that although indole did not affect bacterial growth or CAI-1 production, it impaired the ability of EPEC to enhance its virulence activity in response to the presence of V. cholerae. Furthermore, the co-culture of EPEC and V. cholerae in the presence of B. thetaiotaomicron, an indole-producing commensal bacteria, ablated the enhancement of EPEC virulence. Together, these results suggest that microbiome compositions or diets that influence indole gut concentrations may differentially impact the virulence of pathogens and their ability to sense and respond to competing bacteria.


Assuntos
Escherichia coli Enteropatogênica , Microbioma Gastrointestinal , Indóis , Vibrio cholerae , Humanos , Proteínas de Bactérias/genética , Escherichia coli Enteropatogênica/metabolismo , Regulação Bacteriana da Expressão Gênica , Indóis/metabolismo , Percepção de Quorum/fisiologia
2.
Sci Rep ; 9(1): 4122, 2019 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-30858454

RESUMO

Diarrhoea is the second leading cause of death in children under the age of five. The bacterial species, Vibrio cholerae and enteropathogenic Escherichia coli (EPEC), are among the main pathogens that cause diarrhoeal diseases, which are associated with high mortality rates. These two pathogens have a common infection site-the small intestine. While it is known that both pathogens utilize quorum sensing (QS) to determine their population size, it is not yet clear whether potential bacterial competitors can also use this information. In this study, we examined the ability of EPEC to determine V. cholerae population sizes and to modulate its own virulence mechanisms accordingly. We found that EPEC virulence is enhanced in response to elevated concentrations of cholera autoinducer-1 (CAI-1), even though neither a CAI-1 synthase nor CAI-1 receptors have been reported in E. coli. This CAI-1 sensing and virulence upregulation response may facilitate the ability of EPEC to coordinate successful colonization of a host co-infected with V. cholerae. To the best of our knowledge, this is the first observed example of 'eavesdropping' between two bacterial pathogens that is based on interspecies sensing of a QS molecule.


Assuntos
Escherichia coli Enteropatogênica/fisiologia , Cetonas/metabolismo , Percepção de Quorum , Vibrio cholerae/metabolismo , Escherichia coli Enteropatogênica/patogenicidade , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...